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P R I N C I P L E S  O F  T H E  D Y N A M I C  M E C H A N I S M  O F  

U N F O R C E D  C O N V E C T I O N  O F  C O N T I N U A  U N D E R  

O R D I N A R Y  C O N D I T I O N S  

V. D. Evdokimov UDC (536:551:621 ) 

I t  is f o u n d  that,  a c c o r d i n g  to bas ic  p r i n c i p l e s  o f  m e c h a n i c s  a n d  t h e r m o d y n a m i c s ,  there  e x i s t  m e a n s  f o r  

a f f e c t i n g  c o n t i n u u m  f l o w  by h e a t  wh ich  were  n o t  p r e v i o u s l y  a l l o w e d  f o r  by the  theory.  T h e s e  m e a n s  are  able  

to  p r o v i d e  a c i r cu la t i on  f l o w  wh ich  d o e s  n o t  a t t e n u a t e  wi th  t ime.  

It is well known that, under a rather small effect of viscous friction and a high-power thermal effect on a 
fluid medium, a stationary circulation flow of this medium is possible that is not forced by mechanical work over 
the circulation flow [ 1, 2 ]. We determine the ways of heat effect due to which such unforced convection is possible 
in principle (i.e., according to the basic laws of physics and thermodynamics) under general conditions of viscous 
friction forces, pressure, and a uniform gravity field (q = const). For simplicity and certainty we consider a 
stationary one-dimensional circular flow of a variable cross-section area (see Fig. I) in the absence of mass transfer, 
heat conduction along the flow axis, and motion of medium, whose state is determined by two parameters. According 
to Newton's second and third laws, the law of mass conservation, and the first two principles of thermodynamics 
the following relations hold: 

G d u  = - d F  - g p f d h  - d (p]) + p d f  =- - d F  - f d p  - g p f d h ,  (1) 

d G  = O ,  d i  = T d s  + vdp  , d s  = d Q / T  = d N / ( T G )  , (2) 

where G ffi pu t '  ~ 0; i is the specific enthalpy as a function of i (p ,  s) with its first partial derivatives being i~ ffi v 

- 1 / p ,  i' s -- T, and for other derivatives the relations are valid 

t T p  .n fl ~ .N f f t t . t 

v s= = % ,  % = v  s - v ~ ,  % = V p - - W ,  i p p s = V p s - - v f / h ' + r s ) ;  (3) 

fl .~ 0 is a quantity allowing for the direct effect of heat on the volume via thermal expansion, with the complex 

f l c p / T  being the temperature coefficient of volumetric isobaric expansion [2 ]; V~s is a quantity characterizing the 

indirect effect of heat on the volume by a change in compressibility; this effect is possible only with a change in 

static pressure (e.g., in the absence of thermal expansion, the specific volume changes under the effect of heat on 

V"osdpds = - W ' s d p d s ;  see the right-hand expression in (3) at fl -- 0, an indirect effect of heat on the volume is 
possible for )/sdP ~ 0); the force of viscous friction, if it is directed opposite the flow, is traditionally taken to be 

positive. Having divided (1) by f ~ 0, we obtain 

dp  = - d F / f  - p g d h  - p u d u  - - d F / f  - p g d h  - p d u 2 / 2  . (4) 

Having multiplied (4) by v, we have 

v d F / f  = - vdp - g d h  - d u 2 / 2 .  
(5) 
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Fig. 1. Schematic of one-dimensional stationary unforced flow of continuum 
caused by the effect of heat in a contour of a variable cross-section area: ABD, 

diffusor; C D A ,  confusor; ANna r, AN, powers of the effect of heat in narrow 

and wide portions, respectively; Unar, Ucon, flow velocities in front of ABC and 
C D A ,  respectively. 

Equations (1), (4), and (5) describe motion in the most widespread concepts of mechanics (force, static pressure, 

mechanical energy) and do not allow for the effect of heat explicitly, thus making it impossible to study this effect 

of flow behavior analytically. 
We now describe motion in terms of total pressure p., which changes for u ~ 0 only due to the influence 

of energy. Differentiating the well-known equality i. - i - i(p., s)  - i (p ,  s)  -~ u 2 / 2  (it is easily obtained by 

integrating (2), (5) at d F / f  = p g d h  =~ 0 = d s ) ,  we find 

d i .  - d i  = v . d p .  - v d p  + ( i .  - i) '  s d s  = u d u ,  (6) 

where 

P* P* 

( i .  - O's = T ,  - T =-- f Ts  = f v'sdPi d - [v' s ],d (P* -- P) ; 
P P 

(7) 

in (7) the quantity dpi d is the pressure increment during ideal retardation without energy effects, and the left-hand 

equality of (3) is taken into account; Iv' s ]id is some numerical value of v' s, the mean in a process of ideal retardation. 
From the right-hand equality of (6) we find 

d o ,  = p , v  (Up + p u d u )  - p ,  ( i .  - i)'  s U s ,  (s) 

where, according to (4): 

( d p  + p u d u )  = - d F / f  - p g d h .  

Taking (9) into account we determine from (8) the various energy effects on the total pressure 

d p .  = - p . v d F / f  - p . g d h  - p .  ( i .  - i) '  s d s  - - p . v d F / f  + dpg  + dP*us , 

(9) 

(10) 

where 

dpg  =- - p . g d h  ; 

g. 

dPu s ~ p .  (i  - i . ) '  s d s  = p .  ( T  - T . )  d s  = p .  [v' s l id  (P - P . )  d s  ; (ii) 
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dp~ is the gravity effect of p.  variation in a small portion of theflow; dPus is the dynamic effect of a change in the 
flow total pressure in a small portion that is caused by the influence of heat at [v' s ]iddS ;~ 0 (i.e., the effect arising 

at u ;~ 0 when p.  > p; its negative value is known in gas dynamics as "heat resistance" [3 ]; by its positive value, 
which from a mechanical point of view is a "gain in total pressure," one can explain the observed increase in total 
pressure of two-phase flows in cooling [4 ] (usually T. - T > 0 and dp~a > 0 when ds < 0, i.e., a gain in total 

pressure arises in cooling, (7) is taken into account in (11)). Having integrated Eqs. (1), (5), and (11) along the 
entire circulation flow, we find, respectively: 

dF= ~) pal.f+ ~ gp.fd (-h), ~ vdF/.f=- ~) vdp- ~ pdv, (12) 

p.vaF//= ~ ap*g + ~ d:~, (la) 

where the balance identity ~ dp. - 0; 

d p ; -  - ~ p .gdh= ~ g h d p . =  ~ gh t(Pp).dp. + (p's),ds]- 

- ~ gh (p;). ds + ~ gh (p'p). (alp. -dp;) + ~ gh (,o'a). alp; (14) 

is the integral gravity effect over the circular contour of the change in total pressure caused by both thermal and 

mechanical effects, on which, according to (I0), the found difference dp. - dp*g depends. Under the condition 

. t 

I ~ dpgl >> I ~ [(gh/a2.) 2 + (ghp . )2(yp) . /2 ldp; I  (15) 

(this inequality is expected to be valid at rather small heights), continuing transformation of (14), we express the 

quantity ~ dp[ in terms of the influence of viscous friction forces, dynamic effect, and heat. Having substituted the 

found expression into (13), we find 

[I + gh/a2. + (gh/a2) 2 + (ghp.) 2 (y; ) . /2  ]p .vdF/ f  = 

where 

d,~s - ~ [ghp. (r;)./2 + (I + gh/a2.) ~'/p).Ip.ghds ; 

d:~ - ~ p. (i - i.)'s as = ~ p. (r - r.) as, 

(17) 

08) 

2 * 2 ( 1 9 )  dP*gus =- ~ [1 + gh/a2. + gha2p. ( y ; ) . / 2 ] g h d P u s / a .  

are the integral, over the contour gravity, dynamic, and combined effects of the change in total pressure caused by 

the heat effect; dpu s (see (1 I)); a - ~ -- d~-~. If everywhere in the contour 

dE > O, (20) 

then Eqs. (12), (16) describe unforced convection (the strict condition (20) guarantees that no positive work is put 
on the circulatory flow). This convection can occur thanks to at least one of two forces (see the left-hand-side 

equality in (12)): 

pdf - - ~ fdp > O, ~ gpfd ( -  h) > 0 ,  (21) 

the expansion work (see the right-hand-side equality in (12)) 
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p d v = -  ~ vdp > O, 

at least one of three effects of an increase in total pressure (see (16)): 

(22) 

(2a) 

(see (17)-(19)). We emphasize that, due to two physically different factors g ;~ 0, u ;e 0, according to (4) the 
increase in static pressure (when gdh < 0 and udh < 0) is possible that is necessary for the existence of a power 

source of convection (see the left-hand-side inequality in (21)) and sources in other forms (see (22), (23)), i.e., 

there exist two physically different mechanisms of convection - gravity and dynamic - which in (16) are repre- 

sented separately by the sources (23) and together with a combined source (see (19)). Then, we consider convection 

mainly in terms of total pressure, because Eq. (16) explicitly allows for the effect of heat by ds = d Q / T  (see 

(17)-(19)). We note that in a simple case, when 

>>  I g h/a2. + (gh/a2.) 2 + 2 dF > 0 ,  p .  = cons t ,  (24) 1 

having divided (16) by p .  ~ const, we obtain the equation in the form of energy, the left-hand side of this equation 
coincides with the left-hand side of the right-hand-side equation in (12) and, consequently, its right-hand side 
expresses the source of convection (22) in terms of the effects (17)-(19) (i.e., in the case of (24) we succeed in 

expressing the source of convection (22) in terms of heat effect ds - d Q / T ) .  In a hypothetical simple case, when 

Ps = 0 = v' s, T .  - T = 0 = ~ dP*us = ~> dp•us the right-hand side of (16) takes the form 

Iic 

dP*gs + ~ dp*us + ~ dPgus = ~ dP*gs = ~ (ghp.) 2 (Ts'). d s .  (25) 

In the absence of the effect of heat via thermal and dynamical factors convection is possible, according to (25), due 

to a gravity source ~ dp~ s > 0 caused by the effect of heat via the factors g ;~ 0, ~'s ;~ 0 (in a flow of an ideal gas 

Ys = 0, and this effect is absent). At g = 0 we obtain from (16) and the left-hand-side equality of (12) two equations, 

respectively: 

p.vdF/f = ~ ap~, ~ dF = ~ pal, (26) 

which describe unforced convection under the condition (20) and in the absence of the effect of the fields of mass 

forces. In this case, the viscous friction force ~ dF > 0 is minimized by the pressure force ~ pd f  > 0 (see the 

right-hand-side equality of (26)). We note that this force is often the only one, thanks to which unforced convection 

occurs under the effect of gravitation as well. For example, let, in the widely known in practice case of unforced 

convection in an engineering circulation contour, water with density Ph heated from below ascend in a wide vertical 

tube with diameter d h and water with density Pc > Ph cooled from above descend in a narrow vertical tube with 

diameter d c <  dh and let in this case the mass of the hot water filling the wide tube be greater than the mass of 

the cold water; this is possible if ph d2 > pc d2, then the total gravity force impedes the motion (the right-hand-side 

inequality of (21) does not hold), as does the viscous friction, and the only force causing this convection is obviously, 

the pressure force (see the left-hand-side inequality of (21)). If in this case velocities are small, then the pressure 

force ~fipd.f > 0 is generated by the effect of heat via the gravity factor g ~ 0 (thus, one should distinguish between 

the effect of gravitation on the formation of two different force sources (21) of unforced convection). If gdh ---- O, 
then the force ~ pd.f > 0 can occur due to the efefct of heat via the dynamic factor u ~ 0. The theory of convection 

has not examined unforced motion due to the pressure force ~fi pd f  > 0 arising under the effect of heat in terms of 

the factor u ~ 0 at gdh = 0, though this motion is known from different branches of engineering, e.g., in the system 

of coordinates associated a ramjet engine uniformly and horizontally flying around the Earth, an intense circulating 

air flow (u - 1000) is observed that is, probably, unforced convection, since this engine has no devices that perform 

work over the air flow [31; in the pipe feeding a locomotive boiler with cold water an intense motion (u N 100) is 

observed that occurs in the absence of external work over the flow [5 ]. We note that in these examples the condition 

d.f ~ 0, which is necessary for the existence of the force ~ pd.f > 0, is guaranteed by the presence of a diffusor and 
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a nozzle in the engine or injector, and the flows are cooled under nearly one-dimensional conditions, since the 

cooling flows of surrounding air or droplets of supply water have velocities close to the velocity of cooled flows. 

Thus, unforced convection occurring due to the pressure force ~ p d f  > 0 is well know in the presence and absence 

of the effect of the field of mass forces. Works have recently appeared which prove, by calculations, the possibility 

of the existence of unforced convection in the absence of mass forces [6 ]. The left-hand-side equation in (26) 

explicitly shows this possibility, which exists due to the integral-over-contour dynamic effect of the gain in total 

pressure (see the fight-hand-side inequality of (23)). We express this dynamic source of convection in terms of the 
characteristics of the medium in a simple case, when the relation i~ ffi v(p ,  s) can be presented in the form 

v = v o ( P o l p )  n exp b - v 0 ( P o l P )  n(s) exp b (s),  (27) 

where v 0 ffi v(p0, so) is the specific volume in the reference state P0, so; b =-- b(s )  •- b . ,  n - n ( s )  - n .  are 

dimensionless functions of entropy (with b(so)  ffi 0, 0 < n < 1). For ideal gases of molecular physics [2]: b ffi 

( s  - s o ) /  cp, n ffi c v /  cp " const - [ 3 / 5 - 3 / 4  ], cp ffi const. With allowance for (27), d F  ffi 0 ffi g, s ~ const we integrate 
(5) between the limits from current values i, p to i., p.; as a result we have 

i .  - ~ = ( v . p .  - v p ) / ( 1  - n )  = u 2 / 2 .  (28) 

Differentiating the left-hand-side equality in (28) along the flow with account for the dependences v. = v(p., s), 
b ( s ) ,  n ( s ) ,  we find for media (27) 

- O ,  = - @ ip) - @ . 2 / 2 )  r n)  (29) 

where 

r ( 2 ,  n ) -  [ - I n ( 1 - 2 2 ) - 2 2 1 n / ( 1 - n ) > 0 ;  (307 

2 2 (31) u . - 2 v . p . / ( 1 - n ) = a .  2 n / ( 1 - n ) ,  2 - u / u . =  [ 0 +  1]; 

y - p / p  - - / v  = n / p  > 0 ,  Ys = n ' / p  , ) ' s / Y  = n / n  - n ' . / n .  ; (32) 

p s w i 

p s / P - - V s / V - - f l = n  l n ( p / p 0 ) - b  <> O; (33) 

n', b' are the derivatives of the functions n(s), b(s); u. is the maximum possible velocity at the given values of 

retardation parameters v., p., n. = n (see (28) at p v  = 0); at the prescribed p, s the inequalities in (33) are 

determined by the choice of P0 and the derivatives of the functions n ( s ) ,  b ( s ) .  If (29) holds we obtain from i l l )  

dpus p .  ( u 2 / 2 )  2 '  * = [3t p s / p  + r (2, n) ys ' /y] d s  = p .  ( T  - T . )  d s ,  (34) 

where F(~ ~ 0, n) > 0 (see (30)); u., ;t (see (31)). We note that a dynamic effect of a gain in total pressure 

dPus > 0 is possible, according to (34), due to the effect of heat that increases the density by p'sds > 0 and/or  the 

coefficient of adiabatic compression by 7'sds > 0. Using (34) we find the integral-over-contour dynamic effect for 
media (27) 

, 2 
f apes  = f p .  [u. F (,~, n) 7s'/~, + u2p 's /p  I a s / 2 .  (3S) 

We note that the sources of convection (23) (and the dynamic source for media (24), se e (35), and the gravity 

source (see (17)) arise due to the effect of heat via two characteristics of the medium 
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t t 

Ps ~ 0 ,  Ys r 0 .  (36) 

In the majority of cases both inequalities of (36) hold; for ideal gases [2 ]: P's < O, ?'s = 0; for a liquid phase of 

water: Ps > 0, Y's < 0 at temperatures below 4~ and P's = 0, Ys < 0 at 4~ 
Then we s tudy the effect of the dynamic mechanism, having assumed for simplicity and certainty, that  

g = O ,  Ys = 0 ,  p / p = - - v / v - - f l < O ,  (37) 

the velocities are small and the flow is practically incompressible (p = p . ) ,  the values of p, v, T change slightly, 

the thermal effect of viscosity is negligible, heat with power AN > 0 is supplied in front of the confusor CDA in a 

wide portion at constant Uco n, fcon and is removed in front of the diffusor ABC in a narrow portion at constant  

Unar > ucoa, fnar < fcon, the force of viscous friction is determined by a simple relation 

d F / f  = [AlV/(U 97 + A 2 ] p u 2 / 2  > 0 ,  (38) 

where A 1 > 0, A 2 > 0 are numerical coefficients that depend on the cross-section alone. Under  these conditions 

^ ^ 2 (39) d F / / =  [A~v/(Unar 97~0 + A2lpunar/2 > 0, 

dpus = ~ u2p'sds/2  = Unar2 ( 1 -  fn'~ar ) APnar/2 , ~ dpg s = 0 = ~ dP*gus, (40) 

where .~ - ~ A l d l / ~ / =  const, A2 - "4 A 2 d l / ~ f  = const are the parameters of the contour (the reduced coefficients 

AI and  A2 in (38)); ~nar --- fnar/fcon < 1 is the geometric parameter of the contour (with this inequality the condition 

d f  ~ O, which is necessary for the existence of convection due t o ~  p d f  > 0, holds); it is taken into account that  uf  

= Una~Cnar, v = const; 

Apnar/p = - (p's/p) A N / ( T G )  = f l A N / ( T G )  > 0 ; (41) 

APnar is the increase in the density of the incompressible flow caused by heat removal in front of the diffusor ABC. 

This growth of densi ty decreases the velocities and increases the static pressures in the diffusor, thus leading to 

the emergence of the force ff p d f  > 0. Thus,  in the hydraulics of incompressible flows the problem considered 

represents a new class of problems in which the influence of dynamic effects of the change in total and  static 

pressures caused by the change in density due to the effect of heat is great. We note that  if in front of the diffusor 

ABC the coefficient ~, in a subsonic flow increased by Y'sds > 0, then it would also cause a decrease in velocities in 
the diffusor, a growth of static pressure, and the emergence of the force ~ pd f  > O. 

Using (39), (40), and  (41), we obtain from the l e f t -hand-s ide  equali ty of (26) or from (16) the 
dimensionless relation 

(Al/Una r + A2) Una r = (1 - fnar ) Unar > 0 , (42) 

where Unar --- UnarV~nar/v, fl - pCv, N =- A N / ( T c ~ v  fV~nar). 
Eliminating the zeroth trivial solution, we find from (42) 

Una r = [ (1 - fnar) N - A 1 ]/A 2 - ( N / N c r  - 1) A 1 / A  2 > 0 ,  (43) 

where 

^ ^ 
Ncr = A l / [ f i ( 1  - . f n a r ) l ,  (44) 

/ * ~  A A 

is the critical power determined by the contour parameters AI, fnar and the properties of the medium fl; if (43) is 
satisfied, we obtain from (41) 
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APnar/P - ~ N/~nar "m ~ N A2/['AI ( ~[/Ncr - l)]. (45) 

It is seen from (43) that stationary dynamic convection is possible only at powers N higher than critical 

Ncr (we note that in the presence of gravitation, convection is possible also at powers smaller than Ncr by (44); in 

this case a dynamic mechanism could increase the rate of convection). Let the considered gravitationless convection 

take place at a power N slightly exceeding Nor, i.e., at N - Nor + 6 N  (where Nor >> ~N > 0) and, hence (see (43), 
(44)), at the velocity 

Una r = c~N/~ (1 - f n a r ) / A  2 . (46) 

Then, having decreased by a small value 23N << N, the power becomes smaller than critical and the motion stops. 

The opposite is also possible - with a slight growth of power the velocity can grow considerably from a small 

nonzero value to a stationary one according to (46). We note that these substantial changes in velocity seem to an 

outside observer to be "random" processes, since they take place under practically constant conditions. When 
N >> Ncr, we obtain from (43)-(45) 

~nar N~(1 ~ 2 fnar)/A2 APnar/P -~2/(1 - - -  - , - - -  - / J a r ) ,  

from which it is seen that with a practically constant increment of density, i.e., due to a mechanical mechanism, 

at N -,, oo the velocity una r --~ 0% and higher velocities can be observed at small changes in density and ~mperature 

(thi~ is ~ e  characteristic difference between dynamic and gravity convections). If in the laminar mode A2 = 0, then 

at N > Neon it follows from (43) that Unar - ~  ~,  i.e., stationary convection is impossible in the laminar mode; the 

flow velocity will grow from a small nonzero value to the value at which the turbulent mode begins and A2 ;~ 0 (this 
turbulization of small circulating structures in a large flow in a channel can affect the turbulent characteristics of 
the flow and the coefficient of heat transfer). 

It follows from the above that the dynamic mechanism of convection is able to substantially diversify the 

behavior of an incompressible flow at a rather small effect of viscous friction forces and at a varying cross-section 

area, e.g., in free rotation of circular cylinders forming a circulating contour (Fig. 1); during convection in Benard 

cells [7 ] formed in a layer of mineral oil heated from below through a motionless-surface and cooled from above 

by air, which has virtually no retardation effect on the upper layers, where the effect of the gain in total pressure 

should originate; during convection in an equatorial Hadley cell in which fast-moving air flows are cooled by 

radiation at large heights [8 ]. The effect of the dynamical mechanism of convection is probably great in liquid 

helium, whose intense motion cannot be explained, due to the small temperature difference, by a traditional 

gravitational mechanism [9 ]; the effect is also great in convection at zero gravity, where the experimental data 

greatly differ from theoretical estimates of velocity without regard for the dynamical mechanism [10 ]; and it is 

high in various atmospheric phenomena (tornados, typhoons, global circulation of planetary atmospheres, etc.). 

The basic results of the present theoretical study of the ways in which heat causes unforced circulatory 
convection under ordinary conditions (under force effect of viscosity, pressure, gravity and for a medium whose 

state is determined by two parameters) are the following: 

1) On the basis of the Newton laws of mechanics and the first two principles of thermodynamics an effective 

method of analysis is suggested which describes the circulatory motion in terms of total pressure and allows for 

the influence of heat on the flow via the effect of entropy on enthalpy; a corresponding equation is derived in which 

the integral-over-contour effects (gravity, dynamic, and these combined) of the increase in total pressure that are 
caused by a thermal effect are sources of convection. 

2) Gravity and dynamic effects of the increase in total pressure caused by a thermal effect represent two 

physically different mechanisms of convection: the first requires the field of external mass forces and the second 

requires motion; each of these mechanisms is in principle (i.e., according to the main laws of mechanics and 

thermodynamics) able to individually ensure unforced circulatory flow caused by a thermal effect. 

3) Both the widely-known gravity mechanisms and a mechanism previously not considered in the theory 

dynamic mechanisms of convection arise due to a thermal effect which changes the specific volume by two ways, 
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direct (by thermal expansion) and indirect (by changing adiabatic compressibility) which is possible with the 
change in static pressure (an indirect effect of heat, e.g., due to a change in the coefficient of adiabatic compression, 
has been not considered by the theory as yet, though it is the only means of convection in the absence of thermal 
expansion). 

4) The effect of the dynamic mechanism of convection increases with velocity, which greatly diversifies the 
behavior of an incompressible flow, causing intense motion for small changes in the rate and temperature and a 
"random" increase or decrease in velocity at a practically constant power of the effect of heat close to the critical 
value. 

5) The effect of the dynamic mechanism of convection is clearly great in everywhere-occurring flows with 
movable surfaces of heat transfer (in this case the effect of two-dimensionality and viscous friction forces is small), 
which is confirmed by different observation data. 

N O T A T I O N  

a, adiabatic velocity of sound, m/see; cp, cv, isobaric and isochoric heat capacities, respectively, J /(kg- K); 
d, small increment along the flow in a small portion with length dl; F, viscous friction force, N ; / ,  cross-section 
area of the flow, m2; G, mass flow rate, kg/sec; g, strength of the field of external mass forces, m/see; h, height, 
m; l, spatial coordinate reckoned along the flow, m; i, enthalpy, J/kg; dpg, gravity effect of the change in total 
pressure, Pa; dp:s, dynamic effect of the change in total pressure caused by the effect of heat, Pa; p, p,,  
thermodynamic and total pressure, respectively, Pa; Q, heat taken up by mass unit, J/kg; N, power of the effect 
of heat, J/see; s, entropy, J / (kg.K);  T, thermodynamic temperature, K; u, velocity, m/see; v, specific volume, 
m3/kg; f l  - v's/v , entropy coefficient of isobaric volumetric expansion (the term is not generally accepted), kg. K/J; 
y, coefficient of adiabatic compression, 1/Pa; v, kinematic viscosity, m2/sec; Ph, Pc, density of hot and cold water, 
respectively; dh, de, diameter of vertical tubes with hot and cold water. Subscripts and superscripts: * (upper), for 
the effects of the change in total pressure, ,  (lower), for the parameters of an ideally retarded flow and for maximum 
admissible velocity u. at the given retardation parameters; ' (upper) to denote the derivative (the number of indices 
is equal to the order of the derivative); subscripts (in the presence of the upper ') denote the arguments with respect 
to which the derivatives are taken. 

R E F E R E N C E S  

1. L.D. Landau and E. M. Lifshits, Theoretical Physics. Vol. 4. Hydrodynamics [in Russian ], Moscow (1988). 
2. D.V. Sivukhin, General Course in Physics. Vol. 2. Thermodynamics and Molecular Physics [in Russian ], 

Moscow (1975). 
3. G.N.  Abramovich, Applied Gas Dynamics [in Russian ], Moscow (1969). 
4. M.M. Grishutin, A. P. Sevastyanov, L. I. Seleznyov, and E. D. Fedorovich, Steam-Turbine Plants with Organic 

Working Bodies [in Russian ], Leningrad (1988). 
5. Large Soviet Encyclopedia, Vol. 10, "Injector" [in Russian l, Moscow (1972). 
6. V.V. Glazkov, Self-sustaining thermoconvection flows in the absence of force fields. Theory and possible 

applications. Author's Abstract of Candidate Thesis [in Russian ], Moscow (1994). 
7. M. Yu. Klimontovich, On Synergetics Without Formulas [in Russian ], Minsk (1986). 
8. A.V. Byalko, Our Planet - Earth [in Russian ], Moscow (1989). 
9. P.L. Kapitsa, Scientific Papers. Physics and Technology of Low Temperatures (paper No. 27) [in Russian l, 

Moscow (1989). 
10. S.D. Grishin and L. V. Leskov, Industrialization of Space [in Russian ], Moscow (1987). 

417 


